2,317 research outputs found

    Approximated and User Steerable tSNE for Progressive Visual Analytics

    Full text link
    Progressive Visual Analytics aims at improving the interactivity in existing analytics techniques by means of visualization as well as interaction with intermediate results. One key method for data analysis is dimensionality reduction, for example, to produce 2D embeddings that can be visualized and analyzed efficiently. t-Distributed Stochastic Neighbor Embedding (tSNE) is a well-suited technique for the visualization of several high-dimensional data. tSNE can create meaningful intermediate results but suffers from a slow initialization that constrains its application in Progressive Visual Analytics. We introduce a controllable tSNE approximation (A-tSNE), which trades off speed and accuracy, to enable interactive data exploration. We offer real-time visualization techniques, including a density-based solution and a Magic Lens to inspect the degree of approximation. With this feedback, the user can decide on local refinements and steer the approximation level during the analysis. We demonstrate our technique with several datasets, in a real-world research scenario and for the real-time analysis of high-dimensional streams to illustrate its effectiveness for interactive data analysis

    Developing a site-conditions map for seismic hazard Assessment in Portugal

    Get PDF
    The evaluation of site effects on a broad scale is a critical issue for seismic hazard and risk assessment, land use planning and emergency planning. As characterization of site conditions based on the shear-wave velocity has become increasingly important, several methods have been proposed in the literature to estimate its average over the first thirty meters (Vs30) from more extensively available data. These methods include correlations with geologic-geographic defined units and topographic slope. In this paper we present the first steps towards the development of a site–conditions map for Portugal, based on a regional database of shear-wave velocity data, together with geological, geographic, and lithological information. We computed Vs30 for each database site and classified it according to the corresponding geological-lithological information using maps at the smallest scale available (usually 1:50000). We evaluated the consistency of Vs30 values within generalized-geological classes, and assessed the performance of expedient methodologies proposed in the literature

    Polymeric nanogels as vaccine delivery systems

    Get PDF
    Polymeric nanogels find a relevant field of application in the formulation of a new generation of therapeutic and preventive vaccines, aiming at the fine-tuned modulation of the immune response. Intrinsic properties of polymeric nanogels, such as material chemistry, size and shape, surface charge, and hydrophobicity or hydrophilicity, may be determining factors in shaping the induced immune response. These materials can thus work as synthetic adjuvants, which can also be conjugated with immunostimulants. Polymeric nanogels protect vaccine antigens from degradation in vivo and, surface-conjugated with antibodies or specific ligands, could increase active targeting specificity. This review covers the recent published data concerning the modulation of innate and adaptive immune responses by engineered polymeric nanogels and their potential application as delivery systems in vaccination.S.A. Ferreira is the recipient of a fellowship from International Iberian Nanotechnology Laboratory (INL)

    Supramolecular assembled nanogel made of mannan

    Get PDF
    Introduction: The supramolecular assembled nanogel made of mannan was synthesed and characterized with the purpose to obtain a potential pharmaceutical delivery system able to work both as a therapeutic and prophylactic vaccine adjuvant and antigen carrier. These systems are expected to perform as carriers for proteins and peptides, acting like antigens, optimizing delivery to antigen-presenting cells, by targeting their mannose receptors. Immunity might be improved conjugating this system with other immune response modifiers.info:eu-repo/semantics/publishedVersio

    Inflammatory cell recruitment in Candida glabrata biofilm cell-infected mice receiving antifungal chemotherapy

    Get PDF
    (1) Background: Due to a high rate of antifungal resistance, Candida glabrata is one of the most prevalent Candida spp. linked to systemic candidiasis, which is particularly critical in catheterized patients. The goal of this work was to simulate a systemic infection exclusively derived from C. glabrata biofilm cells and to evaluate the effectiveness of the treatment of two echinocandinscaspofungin (Csf) and micafungin (Mcf). (2) Methods: CD1 mice were infected with 48 h-biofilm cells of C. glabrata and then treated with Csf or Mcf. After 72 h, the efficacy of each drug was evaluated to assess the organ fungal burden through colony forming units (CFU) counting. The immune cell recruitment into target organs was evaluated by flow cytometry or histopathology analysis. (3) Results: Fungal burden was found to be higher in the liver than in the kidneys. However, none of the drugs was effective in completely eradicating C. glabrata biofilm cells. At the evaluated time point, flow cytometry analysis showed a predominant mononuclear response in the spleen, which was also evident in the liver and kidneys of the infected mice, as observed by histopathology analysis. (4) Conclusions: Echinocandins do not have a significant impact on liver and kidney fungal burden, or recruited inflammatory infiltrate, when mice are intravenously (i.v.) infected with C. glabrata biofilm-grown cells.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of the Norte 2020 - Programa Operacional Regional do Norte, financially supported by project UID/EQU/00511/2019 — Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE) funded by national funds through FCT/MCTES (PIDDAC), Célia F. Rodrigues’ (SFRH/BD/93078/20130) PhD grant and M. Elisa Rodrigues (SFRH/BPD/95401/2013) post-doc grant.info:eu-repo/semantics/publishedVersio

    MICROSTRUCTURAL STUDIES FOR OPTIMIZATION OF HEAT TREATMENT IN COMPONENTS OF STEEL X38CrMoV5-1 SUBJECTED TO HIGH STRESSES

    Get PDF
    This material X38CrMoV5-1 is an alloyed steel used for hot working, with good toughness and high resistance to thermal shock. The presence of Cr, Mo and V gives this steel a high resistance to wear, keeping its hardness properties at high temperature. Cr and Mo delay softening annealing and inhibit the grain growth. The great resistance to high temperatures of this type of steels is related with an easy martensitic transformation. This transformation happens even at low cooling speeds. The properties of these types of martensitic steels result as a consequence of their complex microstructure that is obtained by an extremely controlled thermal treatment. Dilatometric testing was performed on continuous cooling from austenization temperature (1050ºC). This testing shows the high hardenability of this type of steels. ATD studies have been done to complement the dilatometric testing. After the previous results, it has been considered that the optimal treatment to get tough and tenacious structure, consists in submitting material to an annealing processing at 780ºC/1hour, followed by a quenching treatment at 1020ºC/1hour and finally cooling in oil with a double tempering at 580ºC/2 hours. This treatment provides the best properties that guarantee service with safety parts.Peer Reviewe

    FOPI/FOPID Tuning Rule Based on a Fractional Order Model for the Process

    Get PDF
    This paper deals with the design of a control system based on fractional order models and fractional order proportional-integral-derivative (FOPID) controllers and fractional-order proportional-integral (FOPI) controllers. The controller design takes into account the trade-off between robustness and performance as well as the trade-off between the load disturbance rejection and set-point tracking tasks. The fractional order process model is able to represent an extensive range of dynamics, including over-damped and oscillatory behaviors and this simplifies the process modelling. The tuning of the FOPID and FOPI controllers is achieved by using an optimization, as a first step, and in a second step, several fitting functions were used to capture the behavior of the optimal parameters of the controllers. In this way, a new set of tuning rules called FOMCoRoT (Fractional Order Model and Controllers Robust Tuning) is obtained for both FOPID and FOPI controllers. Simulation examples show the effectiveness of the proposed control strategy based on fractional calculus
    corecore